skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rankin, J M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Since their discovery more than 50 years ago, broad-band radio studies of pulsars have generated a wealth of information about the underlying physics of radio emission. In order to gain some further insights into this elusive emission mechanism, we performed a multifrequency study of two very well-known pulsars, PSR B0919+06 and PSR B1859+07. These pulsars show peculiar radio emission properties whereby the emission shifts to an earlier rotation phase before returning to the nominal emission phase in a few tens of pulsar rotations (also known as ‘swooshes’). We confirm the previous claim that the emission during the swoosh is not necessarily absent at low frequencies and the single pulses during a swoosh show varied behaviour at 220 MHz. We also confirm that in PSR B0919+06, the pulses during the swoosh show a chromatic dependence of the maximum offset from the normal emission phase with the offset following a consistent relationship with observing frequency. We also observe that the flux density spectrum of the radio profile during the swoosh is inverted compared to the normal emission. For PSR B1859+07, we have discovered a new mode of emission in the pulsar that is potentially quasi-periodic with a different periodicity than is seen in its swooshes. We invoke an emission model previously proposed in the literature and show that this simple model can explain the macroscopic observed characteristics in both pulsars. We also argue that pulsars that exhibit similar variability on short time-scales may have the same underlying emission mechanism. 
    more » « less
  2. null (Ed.)
    ABSTRACT We report the result of measurements of a gradual shift of the integrated pulses towards later spin phase of the anomalous pulsar B0943+10 at high radio frequencies. We have used observations from the Arecibo Observatory and the GMRT at 327 and 325 MHz correspondingly. For the measurements, we have proposed a special method for calculating the correct positions of the partially merged two components of the pulse profile shape with significant temporal changes in their amplitude ratio. The exponential change in the pulse phase with an amplitude of 4 ms and characteristic time of about 1 h has been found. Comparison of our measurements at 325 and 327 MHz with those at the lower frequencies of 25–80, 62 and 112 MHz have shown that the character of the process does not depend on frequency across a wide frequency range. The result is very important for constraining the nature of the delay. It supports the assumption that the process results from changes in the vacuum gap near the surface of the pulsar. The further correlation between changes in the pulse phase and its intensity is discussed. 
    more » « less